

CP Violation in (quasi-)2 body charmless B decays at LHCb

Emmy Gabriel (University of Edinburgh) on behalf of the LHCb collaboration

Overview

- The LHCb Detector
- ϕ_s measurements using $B_s^0 \to \phi\phi$ and $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$
- **CPV** in $B^0_{(s)} \rightarrow hh'$
- Summary and Prospects

The LHCb detector Properties of the LHCb detector LHCb MC Good PID and track & vertex reconstruction √s = 7 TeV Flavour tagging power ~4-8 % Decay time resolution ~45 fs θ**. [rad]** ECAL HCAL SPD/PS $\frac{5}{\pi}/4$ M4 M5 θ_1 [rad] M3 Forward arm spectrometer 5m M2 Magnet RICH2 M1 Pseudorapidity $2 < \eta < 5$ **T**3 T2 RICH1 *lertex* ocator Run 1 Run 2 Data samples:¹ **2010-11:** 1.1 fb^{-1} (7 Tev) **2012:** 2.1 fb^{-1} (8 TeV) **2015-17:** 3.6 fb^{-1} (13 TeV) 20m 5m 10m 15m

Emmy Gabriel (UoE)

ϕ_s measurement in $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$

Motivation for $\phi_s^{\bar{q}q}$

- Decays are FCNCs, dominated by a gluonic penguin diagram
- Sensitive to CP violation in *inter*ference between decay and mixing (phase $\phi_s = -2\beta_s = \Phi_M - 2\Phi_D$)
- Direct CPV possible

- SM prediction of ϕ_s small Phys.Rev.D80:114026,2009
- Larger values possible in certain BSM

models

Phys.Lett. B671 (2009) arXiv:1212.6486v1 Phys.Lett. B493 (2000) J.Phys. G32 (2006)

 $B_s^0 \to (K^+ \pi^-)(K^- \pi^+)$

JHEP 03(2018)140

Observables

Run 1 data $(3fb^{-1})$

- 9 different quasi-2 body decays are considered, requiring timedependent angular analysis
- $m(K\pi)$ window analysed from 750 -1600 MeV/c^2

Decay	Mode	j_1	j_2	Allowed values of h	Number of amplitudes \setminus
$\overline{B_s^0 \to (K^+\pi^-)_0^* (K^-\pi^+)_0^*}$	scalar-scalar	0	0	0	1
$B_s^0 \to (K^+\pi^-)_0^* \overline{K}^* (892)^0$	scalar-vector	0	1	0	1
$B_s^0 \to K^*(892)^{\bar{0}}(K^-\pi^+)_0^*$	vector-scalar	1	0	0	1
$B_s^0 \to (K^+\pi^-)_0^* \overline{K}_2^* (1430)^0$	scalar-tensor	0	2	0	1
$B_s^0 \to K_2^* (1430)^0 (K^- \pi^+)_0^*$	tensor-scalar	2	0	0	1
$B_s^0 \to K^*(892)^0 \overline{K}^*(892)^0$	vector-vector	1	1	$0, \parallel, \perp$	3
$B_s^0 \to K^*(892)^0 \overline{K}_2^*(1430)^0$	vector-tensor	1	2	$0, \parallel, \perp$	3
$B_s^0 \to K_2^*(1430)^0 \overline{K}^*(892)^0$	tensor-vector	2	1	$0, \parallel, \perp$	3
$B_s^0 \to K_2^*(1430)^0 \overline{K}_2^*(1430)^0$	tensor-tensor	2	2	$0, \ _1, \perp_1, \ _2, \perp_2$	5

Parameters in the fit:

- CP-averaged fractions of amplitudes, f_i
- CP conserving strong phases, δ_i
- CP violating phase, ϕ_s
- Direct CPV through $|\lambda|$

 $B^0_{s} \to (K^+\pi^-)(K^-\pi^+)$

JHEP 03(2018)140

 $B_s^0 \to (K^+ \pi^-)(K^- \pi^+)$

JHEP 03(2018)140

+2 dimensions not shown

$$\phi_s^{\bar{d}d}$$
[rad] = -0.10 ± 0.13 ± 0.14
 $|\lambda| = 1.035 \pm 0.034 \pm 0.089$

+ more results of fractions/phases for other amplitudes

First time the weak phase in $b \rightarrow d\bar{d}s$ transitions has been measured.

Results are consistent with SM predictions

Emmy Gabriel (UoE)

Emmy Gabriel (UoE)

 $B_s^0 \to \phi \phi$

Preliminary

LHCb-CONF-2018-001

Triple Product Asymmetries

Run 1 + 2015 -<u>2016 d</u>ata

Can probe for T-violation in a decay time integrated untagged method with the use of *triple product asymmetries* $(A_{U} \text{ and } A_{V})$.

 Simultaneous fitting of separate datasets according to the sign of the U(V) observable.

Run 2 result

 $A_U = 0.3 \pm 1.6 \,(\text{stat}) \pm 0.5 \,(\text{syst}) \%$ $A_V = 1.0 \pm 1.6 \,(\text{stat}) \pm 0.5 \,(\text{syst}) \%$

Run 1 result

 $A_U = -0.3 \pm 1.7 \,(\text{stat}) \pm 0.6 \,(\text{syst}) \ \%$ $A_V = -1.7 \pm 1.7 \,(\text{stat}) \pm 0.6 \,(\text{syst}) \ \%$

Phys.Rev.D90:052011,2014

 $\begin{aligned} \textbf{Definitions} \\ U &= \cos \Phi \times \sin \Phi \\ V &= \eta_{\theta} \times \sin \Phi \end{aligned}$

$$A_U = \frac{N(U > 0) - N(U < 0)}{N(U > 0) + N(U < 0)}$$
$$A_V = \frac{N(V > 0) - N(V < 0)}{N(V > 0) + N(V < 0)}$$

Weighted average $A_U = 0.0 \pm 1.2 \text{ (stat)} \pm 0.4 \text{ (syst)} \%$ $A_V = -0.3 \pm 1.2 \text{ (stat)} \pm 0.4 \text{ (syst)} \%$

 B^0_{a}

Fit

Preliminary

LHCb-CONF-2018-001

Run 1 + 2015 + 2016 data

Parameterisation estimation from *minimisation of negative log likelihood*.

Each of the data samples have:

- Independent signal weights
- Decay time and angular acceptances
- Separate Gaussian constraints to decay time resolution parameters.

Summary of Results

All measurements of CPviolating phases and CP violating parameters *are in agreement with previous measurements and the SM predictions*. Measurements *supersede* previous LHCb measurements.

First time the weak phase in $b \rightarrow d\bar{d}s$ transitions has been measured.

Run 1
$$B_s^0 \to K^{*0} \bar{K}^{*0}$$
 $\phi_s^{d\bar{d}}$ [rad]
 $-0.10 \pm 0.13 \pm 0.14$
 $|\lambda|$
 $1.035 \pm 0.034 \pm 0.089$

 JHEP 03(2018)140

BEACH 2018

arXiv:1805.06759

Motivation

 $\rightarrow hh'$

 $B^{\mathbf{0}}_{(s)}$

 Analysis allows for measurement of the CP asymmetries as a function of decay time.

$$\begin{array}{c} Decays \ considered: \\ B_s^0 \rightarrow K^+ K^- \\ B^0 \rightarrow \pi^+ \pi^- \end{array} \end{array} \begin{array}{c} \text{Time-dependent} \\ \text{measurement} \\ B_s^0 \rightarrow K^+ \pi^- \\ B_s^0 \rightarrow \pi^+ K^- \end{array} \end{array}$$

 $B^0_{(s)} \to hh'$

Analysis Ingredients

- Simultaneous fit to $\pi\pi, KK, K\pi$ categories, using a *flavour-tagged*, *decay*time and hh'-mass dependent fit.
- Inclusion of *decay-time acceptance and* resolution.

Decays considered:

Time-dependent measurement

Time-integrated measurement

Observables

Run 1 data

 $(3fb^{-1})$

Emmy Gabriel (UoE)

Emmy Gabriel (UoE)

Results

 $B^0_{(s)} \to hh'$

$$\begin{array}{rcl} C_{\pi^+\pi^-} &=& -0.34 \ \pm 0.06 \ \pm 0.01, \\ S_{\pi^+\pi^-} &=& -0.63 \ \pm 0.05 \ \pm 0.01, \\ C_{K^+K^-} &=& 0.20 \ \pm 0.06 \ \pm 0.02, \\ S_{K^+K^-} &=& 0.18 \ \pm 0.06 \ \pm 0.02, \\ A_{K^+K^-}^{\Delta\Gamma} &=& -0.79 \ \pm 0.07 \ \pm 0.10, \\ A_{CP}^{B^0} &=& -0.084 \pm 0.004 \pm 0.003, \\ A_{CP}^{B^0} &=& 0.213 \pm 0.015 \pm 0.007, \end{array}$$

- $C_{\pi\pi}, S_{\pi\pi}, A_{CP}^{B_0^0}, A_{CP}^{B_0^s}$ are the most precise measurements from a single experiment.
- C_{KK}, S_{KK} in agreement with previous results.
- 4.0σ deviation of $(C_{KK}, S_{KK}, A_{KK}^{\Delta\Gamma})$ from (0, 0, -1) is the *strongest evidence of CPV* in the B_s^0 meson sector to date.
- Measurements presented allow for *improved constraints on CKM CP-violating phases*.

Conclusion & Prospects

- Many interesting CPV results in charmless B physics at LHCb.
- LHCb leads the *world sensitivity* in several of these measurements.
- Results obtained so far are in *agreement with SM* predictions.
- Interesting future ahead: with more data and the LHCb Upgrade, the precision will improve further.

Thank you for your attention!

Backup Slides

Flavour Tagging

Emmy Gabriel (UoE)

 B^0

Preliminary

LHCB-CONF-2018-001

Run 1 + 2015 + 2016 data

BEACH 2018

LHCB-CONF-2018-001

Preliminary	Prel	iminary
-------------	------	---------

 $B_s^0 \to \phi \phi$

Run 1 +	2015 +
2016	data

i	N_i	a_i	b_i	c_i	d_i	f_i
1	$ A_0 ^2$	1	D	C	-S	$4\cos^2\theta_1\cos^2\theta_2$
2	$ A_{\parallel} ^2$	1	D	C	-S	$\sin^2\theta_1\sin^2\theta_2(1+\cos 2\Phi)$
3	$ A_{\perp} ^2$	1	-D	C	S	$\sin^2\theta_1\sin^2\theta_2(1-\cos 2\Phi)$
4	$ A_{\parallel} A_{\perp} $	$C\sin\delta_1$	$S\cos\delta_1$	$\sin \delta_1$	$D\cos\delta_1$	$-2\sin^2\theta_1\sin^2\theta_2\sin 2\Phi$
5	$ A_{\parallel} A_{0} $	$\cos(\delta_{2,1})$	$D\cos(\delta_{2,1})$	$C\cos\delta_{2,1}$	$-S\cos(\delta_{2,1})$	$\sqrt{2}\sin 2\theta_1\sin 2\theta_2\cos\Phi$
6	$ A_0 A_\perp $	$C\sin\delta_2$	$S\cos\delta_2$	$\sin \delta_2$	$D\cos\delta_2$	$-\sqrt{2}\sin 2\theta_1\sin 2\theta_2\sin \Phi$
7	$ A_{SS} ^2$	1	D	C	-S	$\frac{4}{9}$
8	$ A_{S} ^{2}$	1	-D	C	S	$\frac{4}{3}(\cos\theta_1+\cos\theta_2)^2$
9	$ A_S A_{SS} $	$C\cos(\delta_S-\delta_{SS})$	$S\sin(\delta_S{-}\delta_{SS})$	$\cos(\delta_{SS} - \delta_S)$	$D\sin(\delta_{SS}-\delta_S)$	$\frac{8}{3\sqrt{3}}(\cos\theta_1+\cos\theta_2)$
10	$ A_0 A_{SS} $	$\cos \delta_{SS}$	$D\cos\delta_{SS}$	$C \cos \delta_{SS}$	$-S\cos\delta_{SS}$	$\frac{8}{3}\cos\theta_1\cos\theta_2$
11	$ A_{\parallel} A_{SS} $	$\cos(\delta_{2,1} - \delta_{SS})$	$D\cos(\delta_{2,1}-\delta_{SS})$	$C\cos(\delta_{2,1}-\delta_{SS})$	$-S\cos(\delta_{2,1}{-}\delta_{SS})$	$\frac{4\sqrt{2}}{3}\sin\theta_1\sin\theta_2\cos\Phi$
12	$ A_{\perp} A_{SS} $	$C\sin(\delta_2 - \delta_{SS})$	$S\cos(\delta_2-\delta_{SS})$	$\sin(\delta_2 - \delta_{SS})$	$D\cos(\delta_2 - \delta_{SS})$	$-\frac{4\sqrt{2}}{3}\sin\theta_1\sin\theta_2\sin\Phi$
13	$ A_0 A_S $	$C\cos\delta_S$	$-S\sin\delta_S$	$\cos \delta_S$	$-D\sin\delta_S$	$\frac{\frac{8}{\sqrt{3}}\cos\theta_1\cos\theta_2}{\times(\cos\theta_1+\cos\theta_2)}$
14	$ A_{\parallel} A_S $	$C\cos(\delta_{2,1}-\delta_S)$	$S\sin(\delta_{2,1}-\delta_S)$	$\cos(\delta_{2,1} - \delta_S)$	$D\sin(\delta_{2,1}-\delta_S)$	$\frac{4\sqrt{2}}{\sqrt{3}}\sin\theta_1\sin\theta_2 \\ \times (\cos\theta_1 + \cos\theta_2)\cos\Phi$
15	$ A_{\perp} A_S $	$\sin(\delta_2 - \delta_S)$	$-D\sin(\delta_2-\delta_S)$	$C\sin(\delta_2 - \delta_S)$	$S\sin(\delta_2 - \delta_S)$	$-\frac{4\sqrt{2}}{\sqrt{3}}\sin\theta_{1}\sin\theta_{2}$ $\times(\cos\theta_{1}+\cos\theta_{2})\sin\Phi$
		•				•

Coefficients of the time dependent terms and angular functions . Amplitudes are defined at t=0.

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}t\,\mathrm{d}\cos\theta_1\,\mathrm{d}\cos\theta_2\,\mathrm{d}\Phi} \propto 4|\mathcal{A}(t,\theta_1,\theta_2|,\Phi)|^2 = \sum_{i=1}^{15} K_i(t)f_i(\theta_1,\theta_2,\Phi).$$

$$B_s^0 \to \phi \phi$$

Run 1 + 2015 + 2016 data

Preliminary

LHCB-CONF-2018-001

Angular acceptance:

Simulated events with the same selection criteria as those applied to $B_s^0 \rightarrow \varphi \varphi$ data events used to determine the efficiency correction

Corrections for the differences between data and simulated events are taken into account.

Efficiency as a function of decay time

 $B_s^0 \to D_s^- \pi^+$ for 2011-2012 data $B^0 \rightarrow J/\psi K^{*0}$ for 2015-2016 data Control modes are re-weighted according to kinematic and topological information to more closely match the $B_s^0 \rightarrow \phi \phi$ decay

3 4 5 6

9 10

Time [ps]

8

Run 1 + 2015 + 2016 data

Table 6: Summary of systematic uncertainties for physics parameters in the decay time dependent measurement, where AA denotes angular acceptance, TA denotes time acceptance, and TR time resolution.

Parameter	Mass model	AA	TA	TR	Fit bias	Total
$ A_0 ^2$	0.0035	0.0098	0.0008	0.0001	0.0018	0.0106
$ A_{\perp} ^2$	0.0021	0.0046	0.0007	0.0002	0.0012	0.0052
δ_{\parallel} (rad)	0.0128	0.0653	0.0049	0.0031	0.0179	0.0692
δ_{\perp} (rad)	0.0640	0.0100	0.0085	0.0064	0.0701	0.0960
$\phi_s^{s\overline{s}s}$ (rad)	0.0119	0.0072	0.0077	0.0035	0.0126	0.0206
$ \lambda $	0.0063	0.0217	0.0023	0.0053	0.0097	0.0253

 $B_s^0 \to \phi \phi$

Flavour tagging

Flavour Tagging Performance						
Category	Faction(%)	$\varepsilon(\%)$	D^2	$\varepsilon D^2(\%)$		
OS-only	16.29	12.51	0.098	1.23 ± 0.10		
SSK-only	53.39	40.99	0.044	1.80 ± 0.42		
OS&SSK	30.31	23.27	0.119	2.76 ± 0.22		
Total	100	76.76	0.075	5.79 ± 0.48		

Flavour Tagging Performance						
Tagging algorithm	ϵ_{tag} [%]	$\epsilon_{ m eff}$ [%]				
SS	62.0 ± 0.7	1.63 ± 0.21				
OS	37.1 ± 0.7	3.70 ± 0.21				
Combination	75.6 ± 0.6	5.15 ± 0.14				

LHCB-CONF-2018-001

Preliminary

JHEP 03(2018)140

BEACH 2018

Summary

ϕ_s measurements

- Results agree with theory predictions.
- Current LHCb results, including $B_s^0 \rightarrow J/\psi K^+ K^$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ decays show no large CPV in either $B_s^0 - \bar{B}_s^0$ mixing or $b \rightarrow \bar{s}s\bar{s}$ decay amplitudes.
- Results presented supersede previous LHCb measurement.

 $B^0_{(s)} \to hh'$

- $C_{\pi\pi}, S_{\pi\pi}, A_{CP}^{B_0^0}, A_{CP}^{B_0^s}$ are the most precise measurements from a single experiment.
- C_{KK}, S_{KK} in agreement with previous results.
- 4.0σ deviation of $(C_{KK}, S_{KK}, A_{KK}^{\Delta\Gamma})$ from SM (0, 0, -1) is the strongest evidence of CPV in the B_s^0 meson sector to date.
- Measurements presented allow for *improved constraints on CKM CP-violating phases*.

 $B^0_{(s)} \to hh'$

Current experimental knowledge on the CP parameters:

Reference	$C_{\pi^+\pi^-}$	$S_{\pi^+\pi^-}$	$ ho \left(C_{\pi^+\pi^-}, S_{\pi^+\pi^-} ight)$
BaBar [22]	$-0.25 \pm 0.08 \pm 0.02$	$-0.68 \pm 0.10 \pm 0.03$	-0.06
Belle $[23]$	$-0.33 \pm 0.06 \pm 0.03$	$-0.64 \pm 0.08 \pm 0.03$	-0.10
LHCb $[17]$	$-0.38 \pm 0.15 \pm 0.02$	$-0.71 \pm 0.13 \pm 0.02$	0.38
HFLAV average [19]	-0.31 ± 0.05	-0.66 ± 0.06	0.00
	$C_{K^+K^-}$	$S_{K^+\!K^-}$	$\rho(C_{K^+K^-}, S_{K^+K^-})$
LHCb $[17]$	$0.14 \pm 0.11 \pm 0.03$	$0.30 \pm 0.12 \pm 0.04$	0.02

Experiment	$A^{B^0}_{CP}$	$A_{C\!P}^{B_s^0}$
BaBar [22]	$-0.107 \pm 0.016 \ ^{+}_{-} \ ^{0.006}_{0.004}$	_
Belle $[24]$	$-0.069 \pm 0.014 \pm 0.007$	—
CDF [25]	$-0.083 \pm 0.013 \pm 0.004$	$0.22 \pm 0.07 \pm 0.02$
LHCb $[18]$	$-0.080 \pm 0.007 \pm 0.003$	$0.27 \pm 0.04 \pm 0.01$
HFLAV average [19]	-0.082 ± 0.006	0.26 ± 0.04

ightarrow hh'

Time dependent asymmetries for the $K\pi$ candidates using OS-tagging (left) and SS-tagging (right)

Time dependent asymmetries for the $\pi\pi$ candidates using OS-tagging (left) and SSc-tagging (right)

Systematic uncertainties on the CPV parameters

Source of uncertainty	$C_{\pi^+\pi^-}$	$S_{\pi^+\pi^-}$	$C_{K^+\!K^-}$	$S_{K^+\!K^-}$	$A_{K^+K^-}^{\Delta\Gamma}$	$A_{CP}^{B^0}$	$A_{C\!P}^{B_s^0}$
Time-dependent efficiency	0.0011	0.0004	0.0020	0.0017	0.0778	0.0004	0.0002
Time-resolution calibration	0.0014	0.0013	0.0108	0.0119	0.0051	0.0001	0.0001
Time-resolution model	0.0001	0.0005	0.0002	0.0002	0.0003	negligible	negligible
Input parameters	0.0025	0.0024	0.0092	0.0107	0.0480	negligible	0.0001
OS-tagging calibration	0.0018	0.0021	0.0018	0.0019	0.0001	negligible	negligible
SS K -tagging calibration			0.0061	0.0086	0.0004		
SSc-tagging calibration	0.0015	0.0017				negligible	negligible
Cross-feed time model	0.0075	0.0059	0.0022	0.0024	0.0003	0.0001	0.0001
Three-body bkg.	0.0070	0.0056	0.0044	0.0043	0.0304	0.0008	0.0043
Combbkg. time model	0.0016	0.0016	0.0004	0.0002	0.0019	0.0001	0.0005
Signal mass model (reso.)	0.0027	0.0025	0.0015	0.0015	0.0023	0.0001	0.0041
Signal mass model (tails)	0.0007	0.0008	0.0013	0.0013	0.0016	negligible	0.0003
Combbkg. mass model	0.0001	0.0003	0.0002	0.0002	0.0016	negligible	0.0001
PID asymmetry						0.0025	0.0025
Detection asymmetry						0.0014	0.0014
Total	0.0115	0.0095	0.0165	0.0191	0.0966	0.0030	0.0066

Correlations between statistical uncertainties on the CPV parameters

	$C_{\pi^+\pi^-}$	$S_{\pi^+\pi^-}$	$C_{K^+\!K^-}$	$S_{K^+\!K^-}$	$A_{K^+\!K^-}^{\Delta\Gamma}$	$A_{CP}^{B^0}$	$A_{C\!P}^{B_s^0}$
$C_{\pi^+\pi^-}$	1	0.448	-0.006	-0.009	0.000	-0.009	0.003
$S_{\pi^+\pi^-}$		1	-0.040	-0.006	0.000	0.008	0.000
$C_{K^+\!K^-}$			1	-0.014	0.025	0.006	0.001
$S_{K^+\!K^-}$				1	0.028	-0.003	0.000
$A_{K^+K^-}^{\Delta\Gamma}$					1	0.001	0.000
$A_{CP}^{\overline{B}^0}$						1	0.043
$A_{CP}^{\tilde{B}_s^0}$							1

Emmy Gabriel (UoE)

 $B^0_{(s)} \to hh'$

 $B_s^0 \to (K^+ \pi^-)(K^- \pi^+)$

$B_s^0 \rightarrow$	$(K^+\pi^-)($	$K^-\pi^+)$
s'		II ()

Parameter	Value	Parameter	Value
Common parameters		Vector/Tensor (VT and TV)	
$d\overline{d}$ [red]	$0.10 \pm 0.12 \pm 0.14$	$\int f^{VT}$	$0.160 \pm 0.016 \pm 0.049$
φ_s^{aa} [rad]	$-0.10 \pm 0.13 \pm 0.14$	$f_{ m L}^{VT}$	$0.911 \pm 0.020 \pm 0.165$
	$1.035 \pm 0.034 \pm 0.089$	$\int f_{\parallel}^{\overline{V}T}$	$0.012 \pm 0.008 \pm 0.053$
Vector/Vector (VV)		$f^{''}TV$	$0.036 \pm 0.014 \pm 0.048$
f^{VV}	$0.067 \pm 0.004 \pm 0.024$	$\int_{\Gamma} f_{\rm I}^{TV}$	$0.62 \pm 0.16 \pm 0.25$
f_{L}^{VV}	$0.208 \pm 0.032 \pm 0.046$	$\int f_{\parallel}^{T} V$	$0.24 \pm 0.10 \pm 0.14$
f_{\parallel}^{VV}	$0.297 \pm 0.029 \pm 0.042$	δ_{2}^{VT} [rad]	-2.06 + 0.19 + 1.17
$\delta_{\parallel}^{VV''}$ [rad]	$2.40 \pm 0.11 \pm 0.33$	δ_{\parallel}^{VT} [rad]	$-1.8 \pm 0.4 \pm 1.0$
δ_{\perp}^{VV} [rad]	$2.62 \pm 0.26 \pm 0.64$	δ^{VT} [rad]	$-3.2 \pm 0.3 \pm 1.2$
Scalar/Vector (SV and VS)		$\delta_0^{\overline{T}V}$ [rad]	$1.91 \pm 0.30 \pm 0.80$
f^{SV}	$0.329 \pm 0.015 \pm 0.071$	δ_{\parallel}^{TV} [rad]	$1.09 \pm 0.19 \pm 0.55$
f^{VS}	$0.133 \pm 0.013 \pm 0.065$	δ^{TV}_{\perp} [rad]	$0.2 \pm 0.4 \pm 1.1$
δ^{SV} [rad]	$-1.31 \pm 0.10 \pm 0.35$	Tensor/Tensor (TT)	
δ^{VS} [rad]	$1.86 \pm 0.11 \pm 0.41$	f^{TT}	$0.011 \pm 0.003 \pm 0.007$
Scalar/Scalar (SS)		$\int_{f_{T}}^{J} f_{T}^{TT}$	$0.25 \pm 0.14 \pm 0.18$
f^{SS}	$0.225 \pm 0.010 \pm 0.069$	$\int f_{\parallel}^{T} T$	$0.17 \pm 0.11 \pm 0.14$
δ^{SS} [rad]	$1.07 \pm 0.10 \pm 0.40$	$\int f^T T$	$0.30 \pm 0.18 \pm 0.21$
Scalar/Tensor (ST and TS)		$\int f_{\parallel}^{T} T$	$0.015 \pm 0.033 \pm 0.107$
f^{ST}	$0.014 \pm 0.006 \pm 0.031$	$\delta_0^T \delta_0^T $ [rad]	$1.3 \pm 0.5 \pm 1.8$
f^{TS}	$0.025 \pm 0.007 \pm 0.033$	δ^{TT}_{\parallel} [rad]	$3.00 \pm 0.29 \pm 0.57$
δ^{ST} [rad]	$-2.3 \pm 0.4 \pm 1.7$	$\delta^{\parallel 1}_{\perp}$ [rad]	$2.6 \pm 0.4 \pm 1.5$
δ^{TS} [rad]	$-0.10 \pm 0.26 \pm 0.82$	$\delta_{\parallel}^{\dagger TT}$ [rad]	$2.3 \pm 0.8 \pm 1.7$
		$\delta_{\perp_2}^{\parallel_2}$ [rad]	$0.7 \pm 0.6 \pm 1.3$

Emmy Gabriel (UoE)

Introduction

The large matter/antimatter asymmetry in the Universe is inconsistent with the small amount of CP violation seen in the SM:

Search for new sources of CPV

Diagrams including a loop can create sources of CPV when new heavy particles enter the loop.

Charmless B decays can occur two ways:

- $b \rightarrow u$ transitions from tree diagrams
- $b \rightarrow s, d$ transitions from penguin diagrams including loops

Due to the CKM matrix element $|V_{ub}|$, the size of the amplitude of these two transitions is similar. Within the SM, the relative weak phase difference between these diagrams is given by γ_{CKM} . This allows for precision measurements of CPV.

The CKM Matrix

CPV in SM comes from the CKM matrix.

$$V = \begin{pmatrix} \mathbf{C} & \mathbf{S} & \mathbf{D} \\ 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{C} \\ \mathbf{C} \\ \mathbf{L} \end{pmatrix}$$

Unitarity of the matrix gives the unitary triangles with angles $\,\alpha,\beta,\gamma\,$

$$\gamma = abs \left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right)$$

Experimentally the least known angle
$$\alpha = abs \left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*} \right)$$

$$\beta_s = \operatorname{abs}\left(-\frac{V_{cs}V_{cb}^*}{V_{ts}V_{tb}^*}\right)$$

Determined from the $b \rightarrow c \bar{c} s$ mixing angle, $\phi_s^{c \bar{c} s}$

BEACH 2018